胡小林, 王乐, 徐礼康, 聂程程, 赵桂欣, 万初一.深海采矿垂直管道级配粗颗粒固液两相流数值模拟研究[J].海洋工程,2025,(2):133~140
深海采矿垂直管道级配粗颗粒固液两相流数值模拟研究
Numerical simulation study on graded coarse-particle solid-liquid two-phase flow in deep-sea mining vertical pipelines
投稿时间:2024-03-21  
DOI:10.16483/j.issn.1005-9865.2025.02.013
中文关键词:  深海采矿  CFD-DEM  管道输运  级配粗颗粒  固液两相流
英文关键词:deep-sea mining  CFD-DEM  pipeline transport  graded coarse particles  solid-liquid two-phase flow
基金项目:
作者单位
胡小林1, 王乐1, 徐礼康1, 聂程程2, 赵桂欣3, 万初一3 1.中国船舶及海洋工程设计研究院上海 200011
2.武汉海睿科创科技有限公司
湖北 武汉 430000
3.上海交通大学 船舶海洋与建筑工程学院
上海 200240 
摘要点击次数: 8
全文下载次数: 4
中文摘要:
      矿物粗颗粒的垂直管道输送对于深海采矿较为适用。实际深海采矿工程中,矿物颗粒并非单一粒径,而是以级配形式存在。而级配矿物颗粒在垂直管道输运过程中的变化规律探究较少。文中将计算流体动力学(computational fluid dynamics,简称CFD)与离散元(discrete element method,简称DEM)相结合,对初始速度、进料体积分数和颗粒级配等不同工况下的管道内输运机理进行了深入研究。无论何种工况,小中大3种颗粒的轴向速度均从小到大分布,是因为小颗粒更多的与壁面发生碰撞、摩擦而损失动能。3种颗粒的轴向速度随着初始速度(从2 m/s到4 m/s)和进料体积分数(从2.5%到7.5%)的增加而增大,而颗粒级配的变化对其影响不大。流场的湍动能和轴向流体速度随着初始速度和进料体积分数的增加而增大;而随着颗粒级配的变化(从1∶1∶1到1∶6∶1),湍动能减少,轴向流体速度基本不变。壁面剪应力随着初始速度和进料浓度的增加而增大又随着级配变化而降低。结论对于了解深海采矿输运机理、提升输运效率具有重要意义。
英文摘要:
      The vertical pipeline transport of coarse-particle solid-liquid two-phase flow is applicable in deep-sea mining engineering. In practical deep-sea mining projects, mineral particles are not of uniform size but exist in graded forms. However, the transport mechanism of graded coarse-particle solid-liquid two-phase flow in vertical pipelines has not been fully explored. Therefore, a method coupling computational fluid dynamics (CFD) and discrete element method (DEM) is employed to analyze the dynamic characteristics of graded coarse particles and the flow field variations in the pipeline under different initial velocities, feeding volume fraction, and particle gradation conditions. For all conditions, the axial velocities of small, medium, and large particles are distributed in ascending order. This is because smaller particles lose more kinetic energy due to frequent collisions and friction with the wall. The axial velocities of all three particle sizes increase with higher initial velocities (from 2 m/s to 4 m/s) and feeding volume fraction (from 2.5% to 7.5%), whereas particle gradation has minimal effect. The turbulence kinetic energy and axial fluid velocity of the flow field increase with initial velocity and feeding concentration. However, as particle gradation changes (from 1∶1∶1 to 1∶6∶1), turbulence kinetic energy decreases, while axial fluid velocity remains almost unchanged. Wall shear stress increases with initial velocity and feeding concentration and decreases with gradation changes. The conclusions of this study are significant for understanding the transport mechanisms in deep-sea mining and improving transport efficiency.
查看全文  查看/发表评论  下载PDF阅读器
关闭
水利部交通运输部国家能源局南京水利科学研究院 海洋工程  版权所有
地址: 南京虎踞关34号 邮编:210024 电话:025-85829332 E-mail: oe@nhri.cn
苏ICP备05007122号